Excited states of the inactive and active forms of the orange carotenoid protein.
نویسندگان
چکیده
The orange carotenoid protein (OCP) is a crucial player in the process of nonphotochemical quenching in a large number of cyanobacteria. This water-soluble protein binds one pigment only, the keto carotenoid 3'-hydroxyechinenone, and needs to be photoactivated by strong (blue-green) light in order to induce energy dissipation within or from the phycobilisome, the main light harvesting system of these organisms. We performed transient-absorption spectroscopy on OCP samples frozen in the inactive and active forms at 77 K. By making use of target analysis we determined the excited state properties of the active form. Our results show that OCP photoactivation modifies the carotenoid excited state energy landscape. More specifically the photoactivated OCP is characterized by one state with predominantly ICT character (ICT/S1) and a lifetime of 2.3 ps, and another state with mainly S1 character (S1/ICT) with a lifetime of 7.6 ps. We also show that the kinetic model is fully consistent with the RT data obtained earlier (Berera et al., J. Phys. Chem. B 2012, 116, 2568-2574). We propose that this ICT/S1 state acts as the quencher in the OCP mediated nonphotochemical quenching.
منابع مشابه
Insights into the structural changes occurring upon photoconversion in the orange carotenoid protein from broadband two-dimensional electronic spectroscopy.
Carotenoids play an essential role in photoprotection, interacting with other pigments to safely dissipate excess absorbed energy as heat. In cyanobacteria, the short time scale photoprotective mechanisms involve the photoactive orange carotenoid protein (OCP), which binds a single carbonyl carotenoid. Blue-green light induces the photoswitching of OCP from its ground state form (OCPO) to a met...
متن کاملMicroscopic Parameters in the Excited State of Toluene and Some of Its Haloderavatives
The Ultraviolet-visible (UV) spectra of toluene, ortho-bromo and para-bromo toluene in different solvents have been studied. The electric dipole moments and polarizabilities in the molecular excited electronic states were determined. It was found that the electric dipole moments for the excited states (µ*) and the ground states (µ) of these compounds are equal, and the change in dipole moment i...
متن کاملComparison of Homocysteine and C-reactive protein Levels Between Active and Inactive Veterans
Background: homocysteine and highly sensitive C-reactive protein (CRP) are two novel cardiovascular risk factors that induce atherosclerosis and myocardial infarction through inflammatory mechanisms. The aim of this study was to comparison of levels of these variables among athlete and nonathlete veterans. Methods: in this cross-sectional study two groups of athletes (N=8) and nonathlete (N=8) ...
متن کاملA photoactive carotenoid protein acting as light intensity sensor.
Intense sunlight is dangerous for photosynthetic organisms. Cyanobacteria, like plants, protect themselves from light-induced stress by dissipating excess absorbed energy as heat. Recently, it was discovered that a soluble orange carotenoid protein, the OCP, is essential for this photoprotective mechanism. Here we show that the OCP is also a member of the family of photoactive proteins; it is a...
متن کاملمحاسبه سطح مقطع دیفرانسیلی و کل تهییج تک الکترونی هلیوم در برخورد با پروتون در انرژیهای میانی و بالا به روش فرمولبندی سه جسمی
A three-body model is devised to study differential and total cross sections for the excitation of helium atom under impact of energetic protons. The actual process is a four body one but in the present model the process is simplified into a three-body one. In this model, an electron of helium atom is assumed to be inactive and only one electron of the atom is active. Therefore, the active ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 117 31 شماره
صفحات -
تاریخ انتشار 2013